Small-Angle X-ray Scattering – Interpretation of the results: "What can be obtained from the scattering curve?"

András Wacha

Research Centre for Natural Sciences, Hungarian Academy of Sciences

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous - hierarchical - systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

Particulate systems

Size distribution of SiO_2 nanoparticles Proteins – biological macromolecules

Summary

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous – hierarchical – systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Particulate systems

Size distribution of SiO₂ nanoparticles Proteins – biological macromolecules

Summary

Pinhole camera

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

X-ray tube and synchrotron

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Bragg's law

- Periodic sample (*d* repeat distance)
- θ incidence and reflection angle
- Constructive interference at the detector: waves reflected from neighbouring planes meet *in phase*
- $\Delta s = n\lambda$ where $n \in \mathbb{N}$
- From geometry: $\Delta s = 2d \sin \theta$

•
$$2d\sin\theta = n\lambda$$

$$\frac{4\pi}{\lambda}\sin\theta = \frac{2\pi}{d}$$

$$q = \frac{2\pi}{d} n$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Connection between structure and scattering

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Guinier and Porod limits

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous – hierarchical – systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Particulate systems

Size distribution of SiO₂ nanoparticles Proteins – biological macromolecules

Summary

Lipid systems, liposomes

- Amphipatic molecules: hydrophilic headgroups, hydrophobic carbon chains
- Self-assemble in aqueous solution
- Cell membranes of living organisms
- Other similar molecules: surfactants, detergents etc.
- Application in research & industry:
 - Model membranes
 - Drug carrier vehicles
 - Nanoreactors
 - **۰**...
- Phase transitions
 - Thermotropic
 - Lyotropic

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Self-assembled structures of phospholipid systems

- The self-assembled structure is determined by:
 - Shape of the lipid molecule
 - Length and flexibility of the carbon chains
 - Electrostatic charge of the headgroups
- Bilayer lipids: approximately cylindrical
- Non-bilayer lipids: conical shape
 - Large headgroup cross-section area: micelle / hexagonal phase
 - Small headgroup cross-section area inverse micelle / inverse hexagonal phase

Self-assembled structures of phospholipid systems

- The self-assembled structure is determined by:
 - Shape of the lipid molecule
 - Length and flexibility of the carbon chains
 - Electrostatic charge of the headgroups
- Bilayer lipids: approximately cylindrical
- Non-bilayer lipids: conical shape
 - Large headgroup cross-section area: micelle / hexagonal phase
 - Small headgroup cross-section area inverse micelle / inverse hexagonal phase

イロト 不得 トイヨト イヨト

-

Lyotropic phases of lipid/water systems

Thermotropic phases of DPPC/water mixtures

|▲□▶|▲□▶|▲三▶|▲三▶||三|||のへで

Thermotropic phases of DPPC: SAXS

Relative peak positions: 1, 2, 3, 4 \rightarrow lamellar

Intensity (1/cm)

э

Thermotropic phases of DPPC: SAXS

Relative peak positions: 1, 2, 3, $4 \rightarrow$ lamellar

Temperature	25°C	38°C	46° C	55°C
Phase	L_{eta}	$P_{\beta'}$	L_{lpha}	L_{lpha}
Repeat distance	6.373 nm	"7.193 nm*"	6.657 nm	6.569 nm

DOPC

Relative peak positions: 1, 2, (3)

Temperautre	25°C `	∕ 38°C	46°C	55°C
Phase	L_{lpha}	L_{lpha}	L_{lpha}	L_{lpha}
Repeat distance	6.323 nm	6.370 nm	6.440 nm	6.642 nm
				6.335 nm

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへの

DOPE: hexagonal phase

Relative peak positions: 1, $\sqrt{3}$, 2, $\sqrt{7}$, 3, $\sqrt{12}$, $\sqrt{13}$

Temperature	25°C	38° C	46°C	55°C
Phase	HII	HII	HII	HII
Lattice parameter	6.458 nm	6.244 nm	6.119 nm	5.989 nm

Coexistence of phases

- Room temperature: lamellar phase (L_{α})
- ▶ 38 °C: appearance of the inverse hexagonal phase (H_{II})
- ▶ 46 °C: the cubic phase (Q_{II}) appears, three phases coexist
- ▶ 55 °C: the lamellar phase vanishes
- after cooling: the cubic phase remains, the lamellar phase is not recovered: memory effect!

Sterically stabilized unilamellar vesicles

- Unilamellar vesicle: a single phospholipid bilayer
- Hydration of lipids: multilamellar vesicles are formed *spontaneously*
- "Unilamellarization": ultrasound threatment / extrusion
- Avoiding spontaneous fusion to multilamellar vesicles:
 - Charged lipids
 - Sterical stabilization: e.g. with PEG-conjugated lipids
- ▶ Primary application: drug carrier and targeting agents ⇒ size is critical!

Ð	A	\mathbb{R}	
\mathcal{A}	$\sum_{i=1}^{i}$		
6	Y)		Ŷ

Sterically stabilized vesicles

- ► Less electrons in the object ⇒ weaker scattering
- No layer-layer correlation \Rightarrow no peaks
- ► What we see is the *phospholipid bilayer form factor*

Scattering of a phospholipid bilayer

▲ロト ▲御ト ▲ヨト ▲ヨト ― ヨー のへで

Scattering of a bilayer

 $I_{\text{SSL}}(q) = [F_{\text{PEG,in}}(q) + F_{\text{head,in}}(q) + F_{\text{CH}}(q) + F_{\text{head,out}}(q) + F_{\text{PEG,out}}(q)]^2$

- Every term is a step function or a Gaussian curve
- $\blacktriangleright \rho(q) = \begin{cases} \rho_0 & \text{if } |r r_0| < \sigma \\ 0 & \text{otherwise} \end{cases} \quad \rho(q) = \frac{\rho_0}{\sqrt{2\pi\sigma^2}} e^{-\frac{(r r_0)^2}{2\sigma^2}}$
- Model parameters:

	ρ	r	σ	
Inner PEG	$ ho_{PEG,in}$	<i>r</i> PEG,in	$\sigma_{PEG,in}$	
Inner headgroup	$ ho_{\sf head}$	$-r_{head}$	$\sigma_{\sf head}$	
Carbon chain	-1	0	σ_{tail}	
Outer headgroup	$ ho_{head}$	$r_{\rm head}$	$\sigma_{\sf head}$	
Outer PEG	$ ho_{PEG,out}$	r _{PEG,out}	$\sigma_{PEG,out}$	
+ global intensity scaling factor (A) + constant background (C) +				
mean vesicle radius (R_0) + spread of the vesicle radius (δR)				

- Asymmetric model (PEGs are different): 14 parameters
- Symmetric model (PEGs are equivalent): 11 parameters

Sterically stabilized vesicles

Micelles

- Self-assembling systems composed of amphipatic molecules
- Conical shape: large hydrophilic head, narrow hydrophobic tail
- Critical micelle concentration (CMC)
- Not only spherical (even when only one component!)

Bicelles

- Two components: long-chained bilayer lipid and short-chained detergent
- The shape is controlled by:
 - $q = c_{\rm lipid}/c_{\rm detergens}$
 - q = 0: detergent micelle
 - $q \to \infty$: bilayer
- Importance: small carriers for membrane proteins
- Typical example: DHPC-DMPC bicelle
 - DHPC: 1,2-Dihexanoyl-sn-Glycero-3-Phosphocholine
 - DMPC: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine

Scattering of a DHPC micelle

- Scattering: similar to the lipid bilayers
- Guinier region
- Fitting: micelle shape

Peptide-carrying DHPC-DMPC bicelles

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous - hierarchical - systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

Particulate systems

Size distribution of SiO₂ nanoparticles Proteins – biological macromolecules

Summary

Activated carbons

Activated carbons

- Adsorbent, substrate, structural material
- Hierarchical structure
- Preparation:
 - 1. Pyrolysis: organic \rightarrow C
 - 2. Activation: pore formation
- Tailorable
 - choice of the precursor
 - parameters of the activation
- Anisotropy: not utilized (but could be...)

Model of the hierarchical structure

amorphous carbon aggregation of crystallites Hirsch, Proc. Royal Soc. Lond. A (1954) 226(1165) 143-169

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Activated carbons

Activated carbons

- Adsorbent, substrate, structural material
- Hierarchical structure
- Preparation:
 - 1. Pyrolysis: organic \rightarrow C
 - 2. Activation: pore formation
- Tailorable
 - choice of the precursor
 - parameters of the activation
- Anisotropy: not utilized (but could be...)

Model of the hierarchical structure

amorphous carbon aggregation of crystallites Hirsch, Proc. Royal Soc. Lond. A (1954) 226(1165) 143-169

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

Activated carbons

Activated carbons

- Adsorbent, substrate, structural material
- Hierarchical structure
- Preparation:
 - 1. Pyrolysis: organic $\rightarrow C$
 - 2. Activation: pore formation
- Tailorable
 - choice of the precursor
 - parameters of the activation
- Anisotropy: not utilized (but could be...)

Model of the hierarchical structure

Hirsch, Proc. Royal Soc. Lond. A (1954) 226(1165) 143-169

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Sample preparation

Sample preparation for SAXS measurements

- ▶ Pyrolysis of 1 cm³ wooden cubes (700 °C) → $6 \times 6 \times 6$ mm³ carbon cubes
- Physical activation:

$$C_{(s)} \xrightarrow{H_2O_{(g)}} C_{(g)}$$

Mass decrease (conversion) with increasing activation time:

	Fagus	Quercus	Picea
	sylvatica	robur	abies
	(beech)	(oak)	(spruce)
0 min	0%	0 %	0 %
15 min	9 %	10 %	10 %
45 min	26 %	26 %	27 %
90 min	54 %	55 %	49 %

 SAXS measurements: synchrotron beamlines (Hamburg, Berlin)

For details, see: Wacha, Varga, Vainio, Hoell, Bóta (2011) Carbon 49(12) 3958-3971.

SAXS on activated carbons

- Horizontal scattering pattern: vertical fibrils
- Decrease in anisotropy: breaking of the fibrils, pore formation
- Characterization of anisotropy: azimuthal scattering curves, sector averaging

Extent of the anisotropy in real space

Radial scattering curves from the scattering patterns

- Averaging over the full 2π (- -)
- Narrowed to the region of the most intensive azimuthal peak (—)
- Perpendicular to the previous direction (\cdots)
- Anisotropy does not appear at small sizes $(q > 2 \text{ nm}^{-1} \rightarrow d < 1.5 \text{ nm})$
- Anisotropy decreases with activation
- Power-law functions (→ fractal dimension) and Guinier regions (→ radius of gyration)
- Two Guinier regions
 - Small conversion (short activation time): micropores
 - Large conversion (long activation time): mesopores
- Mass fractal \rightarrow surface fractal transition
 - Spruce: surface fractal appears after 49 % burn-off: microcracks
 - Beech: no surface fractal: inherently porous?

Photoluminescent gold-cystein nanocomplexes

- Protein-stabilized supramolecular gold clusters: photoluminescence
- Au-Cys nanocomplex: a simple model for uncovering the stabilizing mechanism

► The speed of transition strongly depends on the temperature of incubation, ranging from a few hours to a day ⇒ time-resolved SAXS on CREDO

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ♥ ●

Söptei et. al. 2015 Coll.Surf.A 470, 8-14.

TRSAXS on the Au-Cys nanocomplex

Curvature at small $q \rightarrow$ Guinier

- Objects with well-defined sizes
- Moves left \rightarrow increase in size
- ► Increasing intensity → their number increases
- Starts with I ∝ q⁻² → thin lamellae (generalized Guinier)

Peak at the high-q limit

- Periodic structure
- ► Increasing intensity → more perfect periodicity

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Automated model fitting

Number of layers and periodicity

 Guinier approximation for extended lamellae:

 $I_{\text{thickness}} \approx G \cdot q^{-2} e^{-q^2 R_T^2} \rightarrow$ thickness of the homogeneous lamella: $T = \sqrt{12} R_T$

- ▶ Final periodic distance: 1.29 nm
 ▶ Fine structure of the lamellae: Au layers above each other with ≈ 1.3 nm distance, the Cys molecules acting as spacers
- Well-correlated with the increase of photoluminescence intensity: 0.9208

Automated model fitting

Lamellae as seen by TEM

 Guinier approximation for extended lamellae:

 $I_{\text{thickness}} \approx G \cdot q^{-2} e^{-q^2 R_T^2} \rightarrow$ thickness of the homogeneous lamella: $T = \sqrt{12} R_T$

- Final periodic distance: 1.29 nm
 Fine structure of the lamellae: Au layers above each other with ≈ 1.3 nm distance, the Cys molecules acting as spacers
- Well-correlated with the increase of photoluminescence intensity: 0.9208
- ► FF-TEM measurements: a few nm thick lamellae

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous – hierarchical – systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

Particulate systems

Size distribution of SiO_2 nanoparticles Proteins – biological macromolecules

Summary

Size distribution of SiO $_2$ nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission: introducing a new SiO₂ particle size standard. Certification of the new material with several SAXS instruments

ERM FD-101b: candidate reference material (CRM)

- Methods of size determination:
 - 1. Guinier fit: $I(q \ll 1/R) \approx I_0 e^{-\frac{q^2 R^2}{5}}$ 2. Fitting of the sphere form factor: $I(q) = \Phi_{\text{sphere}}(q, R) \equiv V_R^2 \left[\frac{3}{(qR)^3} (\sin(qR) - qR\cos(qR))\right]^2$

3. Fitting of a sphere distribution:

$$I(q) = \int_{0}^{\infty} p(R) \Phi_{\text{sphere}}(q, R) dR$$
4. Monte Carlo method: R_i population

with w_i statistical weights where $|I(q) - \sum_i w_i \Phi_{sphere}(q, R_i)|$ is minimized

Size distribution of SiO_2 nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission: introducing a new SiO₂ particle size standard. Certification of the new material with several SAXS instruments

- Methods of size determination:
 - 1. Guinier fit: $I(q \ll 1/R) \approx l_0 e^{-\frac{q^2 R^2}{5}}$ 2. Fitting of the sphere form factor: $I(q) = \Phi_{\text{sphere}}(q, R) \equiv V_R^2 \left[\frac{3}{(qR)^3} (\sin(qR) - qR\cos(qR))\right]^2$ 3. Fitting of a sphere distribution:

Fitting of a sphere distribution:

$$I(q) = \int_{0}^{\infty} p(R) \Phi_{\text{sphere}}(q, R) dR$$

4. Monte Carlo method: R_i population with w_i statistical weights where $|I(q) - \sum_i w_i \Phi_{sphere}(q, R_i)|$ is minimized

Size distribution of SiO₂ nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission: introducing a new SiO₂ particle size standard. Certification of the new material with several SAXS instruments

Monte Carlo size determination

- Methods of size determination:
 - 1. Guinier fit: $I(q \ll 1/R) \approx I_0 e^{-\frac{q^2 R^2}{5}}$ 2. Fitting of the sphere form factor: $I(q) = \Phi_{\text{sphere}}(q, R) \equiv$ $V_R^2 \left[\frac{3}{(qR)^3} (\sin(qR) - qR\cos(qR))\right]^2$ 3. Fitting of a sphere distribution: $I(q) = \int_0^\infty p(R) \Phi_{\text{sphere}}(q, R) dR$
 - 4. Monte Carlo method: R_i population with w_i statistical weights where $|I(q) - \sum_i w_i \Phi_{sphere}(q, R_i)|$ is minimized

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ♥ ●

Size distribution of SiO₂ nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission: introducing a new SiO₂ particle size standard. Certification of the new material with several SAXS instruments

Monte Carlo size determination

- Methods of size determination:
 - 1. Guinier fit: $I(q \ll 1/R) \approx I_0 e^{-\frac{q^2R^2}{5}}$ 2. Fitting of the sphere form factor: $I(q) = \Phi_{\text{sphere}}(q, R) \equiv$ $V_R^2 \left[\frac{3}{(qR)^3} (\sin(qR) - qR\cos(qR))\right]^2$ 3. Fitting of a sphere distribution: $I(q) = \int_{-\infty}^{\infty} p(R) \Phi_{\text{sphere}}(q, R) dR$
 - 4. Monte Carlo method: R_i population with w_i statistical weights where $|I(q) - \sum_i w_i \Phi_{sphere}(q, R_i)|$ is minimized

A favourable side-effect: CREDO has been certified by IRMM for nanoparticle size distribution determination

Biological Small-Angle X-ray Scattering

BioSAXS

- Biorelevant macromolecules
- Mainly size- and shape determination assuming particles of homogeneous electron density
- Key parameters: R_g , $I_0 \equiv \lim_{q \to 0} I(q)$
- Information to be obtained:
 - Size, (low resolution) shape, volume and molecular mass of the protein
 - Flexibility/folding state (folded/disordered)
 - Validation of crystal structures
 - Aligning the relative positions of known domains

Drawbacks / caveats

- ► Low scattering contrast ⇒ bad signal/noise ratio
- Dilute sample (otherwise Guinier approximation breaks down)
- Purified sample (esp. contaminating large molecules)
- Monodisperse sample (avoid oligomerization, aggregation)
- Featureless scattering curve: danger of "overfitting"
- Uncertainties of background subtraction (solvent scattering)
- ► Phase problem ⇒ the uniqueness of the determined shape

The BioSAXS method

- Well-established and validated algorithms and methods available
- Basic assumptions: the protein solution is a monodisperse population of independent, homogeneous nanoparticles independent: no interparticle interference, Guinier approximation holds
 monodisperse: no oligomerization, no aggregation homogeneous: simple shape fitting; SAXS is blind on the atomic length-scale!

Interpretation of BioSAXS measurements

- Guinier approximation: $I(q \ll R_g) \propto l_0 e^{-\frac{q^2 R_g^2}{3}}$; $l_0 = (\Delta \rho)^2 V^2$.
- Porod invariant: $Q \equiv \frac{1}{2\pi^2} \int_{0}^{\infty} q^2 I(q) dq = 2\pi^2 (\Delta \rho)^2 V$
- Porod volume: $V_{\text{Porod}} = 2\pi^2 I_0 / Q$
- First steps:
 - 1. Subtraction of the solvent background (corrected by the volume fraction of the protein)
 - 2. Guinier fit $\rightarrow I_0, R_g$
 - 3. Porod invariant $\rightarrow V_{\mathsf{Porod}}$
 - 4. Inverse Fourier: $I(q) \rightarrow p(r)$ pair distance distribution function (PDDF)
 - 5. I_0 , R_g can be obtained from p(r):

$$I_0 = \int_0^\infty p(r) \mathrm{d}r; \qquad R_g^2 = \frac{\int_0^\infty p(r) r^2 \mathrm{d}r}{2 \int_0^\infty p(r) \mathrm{d}r}$$

 ∞

- 6. Compare the I_0 and R_g obtained from the two methods
- 7. Further interpretation...
- ATSAS: software suite for BioSAXS data processing and interpretation (EMBL Hamburg, Research Group of Dmitri Svergun)

The Kratky plot

- ► High-*q* part of the scattering of a polimer chain following Gaussian statistics: $I(q \rightarrow \infty) \propto \frac{2}{q^2 R_z^2}$
- Kratky plot: q^2I q. Behaviour in the $q \rightarrow \infty$ limit:
 - Folded proteins $(I \propto q^{-4})$: tends to 0
 - Disordered proteins $(I \propto q^{-2})$: constant or divergent

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Protein shape fitting from small-angle scattering

Fitting of geometrical shapes to scattering curves or PDDFs

- BODIES program (part of ATSAS)
- Ball, hollow sphere, ellipsoid, dumbbell etc.
- Very few parameters

Dummy atom model (DAM)

- Constructing the shape from tightly packed (fcc or hcp lattice) spherical building blocks
- Monte Carlo algorithm
 - 1. Random configuration
 - 2. Small, random modification of the configuration (add/remove a unit)
 - 3. Calculate scattering
 - 4. Compare the measured and calculated scattering
 - Better fit: keep the change
 - Worse fit: drop the change (or keep it with a low probability)
 - 5. Repeat from step #2 until needed
- Many parameters: possible ambiguity of the results

Protein shape fitting from small-angle scattering

Fitting of geometrical shapes to scattering curves or PDDFs

- BODIES program (part of ATSAS)
- Ball, hollow sphere, ellipsoid, dumbbell etc.
- Very few parameters

Dummy atom model (DAM)

- Constructing the shape from tightly packed (fcc or hcp lattice) spherical building blocks
- Monte Carlo algorithm
 - 1. Random configuration
 - 2. Small, random modification of the configuration (add/remove a unit)
 - 3. Calculate scattering
 - 4. Compare the measured and calculated scattering
 - Better fit: keep the change
 - Worse fit: drop the change (or keep it with a low probability)

- 5. Repeat from step #2 until needed
- ► Many parameters: possible ambiguity of the results

Crystal structure

Well-known protein ("veterinary horse")

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Well-known protein ("veterinary horse")

- Correlation peak
 - Caused by el.stat. repulsion
 - Radius of gyration cannot be determined

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- How to get rid of it?
 - Dilution

Effect of ionic strength

- Well-known protein ("veterinary horse")
- Correlation peak
 - Caused by el.stat. repulsion
 - Radius of gyration cannot be determined
 - How to get rid of it?
 - Dilution
 - Salting (screening the repulsion)

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

Guinier plot

- Well-known protein ("veterinary horse")
- Correlation peak
 - Caused by el.stat. repulsion
 - Radius of gyration cannot be determined
 - How to get rid of it?
 - Dilution
 - Salting (screening the repulsion)

► Guinier plot (log *I* vs. *q*²): assessing the *I* ∝ exp(-*q*²*R*²_g/3) shape

Kratky plot

- Well-known protein ("veterinary horse")
- Correlation peak
 - Caused by el.stat. repulsion
 - Radius of gyration cannot be determined
 - How to get rid of it?
 - Dilution
 - Salting (screening the repulsion)
- Guinier plot (log *I* vs. *q*²): assessing the *I* ∝ exp(-*q*²*R*²_g/3) shape
- Kratky plot $(q^2 I \text{ vs. } q)$: folded protein

< ロ > < 同 > < 回 > < 回 >

The shape of lysozyme

"Dummy atom model" - coarse-grained description

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The shape of lysozyme

"Dummy atom model" - coarse-grained description

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

3

Good agreement with the crystal structure!

Calmodulin

- ► Highly abundant plasma protein of eukaryotic cells (≈ 1 %)
- Key element of Ca²⁺-induced signal pathways

Apo (Ca²⁺-free) conformation (MX)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Envelope: Van der Waals surface

Calmodulin

- ► Highly abundant plasma protein of eukaryotic cells (≈ 1 %)
- Key element of Ca²⁺-induced signal pathways
- Changes shape on Ca²⁺ binding
 - The "EF-hand" motifs open in both end-domains: hydrophobic pockets open up
 - End domains are displaced
 - Secondary structure of the linker part: loop → helix (known crystallization artefact!)

Ca²⁺-bound conformation (MX)

Envelope: Van der Waals surface

Calmodulin – SAXS results

Scattering curves

Very similar scattering curves

イロト イヨト イヨト

프 > 프

Scattering curves: dumbbell shape

Calmodulin – SAXS results

Guinier plot

Very similar scattering curves

イロト 不得下 イヨト イヨト

3

- Scattering curves: dumbbell shape
- Similar radii of gyration

Calmodulin – SAXS results

Kratky plot

- Very similar scattering curves
- Scattering curves: dumbbell shape
- Similar radii of gyration
- Partially disordered (linker part?)

イロト イ押ト イヨト イヨト

э

Calmodulin - SAXS results

DAM: apo conformation

- Very similar scattering curves
- Scattering curves: dumbbell shape
- Similar radii of gyration
- Partially disordered (linker part?)
- Dummy atom model:
 - Dumbbell shape
 - Apo conformation more "loose"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Calmodulin – SAXS results DAM: Ca²⁺-bound conformation

- Very similar scattering curves
- Scattering curves: dumbbell shape
- Similar radii of gyration
- Partially disordered (linker part?)
- Dummy atom model:
 - Dumbbell shape
 - Apo conformation more "loose"
 - Ca²⁺ binding makes the structure more rigid
 - Differences from the crystal structure: crystallization artefacts?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN
- Quantification of the ambiguity (AMBIMETER)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN
- Quantification of the ambiguity (AMBIMETER)
 - A library has been made from all possible shapes
 - Dimensionless scattering curves for the library elements: I(q)/I₀ vs. qR_g

- Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN
- Quantification of the ambiguity (AMBIMETER)
 - A library has been made from all possible shapes
 - Dimensionless scattering curves for the library elements: I(q)/I₀ vs. qR_g
 - Find number of those library elements where the curve is compatible with the measured one

Petoukhov & Svergun, Acta Crystallographica D 2015, 71(5), 1051-1058

- Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN
- Quantification of the ambiguity (AMBIMETER)
 - A library has been made from all possible shapes
 - Dimensionless scattering curves for the library elements: I(q)/I₀ vs. qR_g
 - Find number of those library elements where the curve is compatible with the measured one
 - Lysozyme: 1; apo calmodulin: 422; Ca²⁺-bound calmodulin: 417

Petoukhov & Svergun, Acta Crystallographica D 2015, 71(5), 1051-1058

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Recapitulation

Self-assembled systems

Ordered phases Multilamellar and hexagonal phases Unilamellar vesicles Micellar systems

Continuous – hierarchical – systems

Anisotropy and porosity of activated carbons In situ experiments on a gold-cysteine self-assembling nanocomplex

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ♥ ●

Particulate systems

Size distribution of SiO₂ nanoparticles Proteins – biological macromolecules

Summary

Literature and software

Software

- SASFit: model fitting
- ► ATSAS: BioSAXS data handling, *R_G*, PDDF calculation, dummy atom fitting etc.
- SANSView: plotting, model fitting

Literature

- Boualem Hammouda: Probing Nanoscale Structures: The SANS Toolbox (http://www.ncnr.nist.gov/staff/hammouda/the_ SANS_toolbox.pdf)
- J. Kohlbrecher, I. Breßler: SASFit manual (http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html)
- L. A. Feigin és D. I. Svergun: Structure Analysis by Small-Angle X-Ray and Neutron Scattering (http://www.embl-hamburg.de/ biosaxs/reprints/feigin_svergun_1987.pdf)

Summary

Interpretation of SAXS results

- Multilamellar vesicles and ordered lipid systems: determination of the periodic repeat distance
- Sterically stabilized vesicles: the radial electron density distribution of the phospholipid bilayer
- Micelles and bicelles: shape, core-shell model parameters
- Activated carbons: anisotropy, fractal properties
- Gold-cysteine nanocomplex: the time evolution of the photoluminescent nanostructure
- ▶ SiO₂ nanoparticles (repeated): size, size distribution
- BioSAXS: determination of the size, shape and flexibilitx of proteins in solution

Acknowledements

The experimental results presented in this lecture could not have been made without the contributions (sample preparations, ideas etc.) of the following people:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Attila Bóta
- Judith Mihály
- Zoltán Varga
- Andrea Jónás
- Andrea Bodor
- Erika Dudás
- Tünde Juhász
- Balázs Söptei

Thank you for your attention!

